Guidance for the Presentation of NEXRAD Looping on Cockpit Weather Information Displays

Jim Chamberlain

NASA Langley Research Center

Katherine Lemos

University of Maryland

Outline

- Weather Trending & Animation (Looping)
- Challenges of In-Flight Looping Use
- Looping Design Options, Experiment Issues
- Looping Experiments
 - Experiments 1 and 2: results & status
 - Guidance to date
- Future experiments and opportunities

Weather Radar Mosaic Products

- Static NEXRAD Radar Mosaic Images
 - Depicts spatial nature of weather
 - Temporal changes (trends) not depicted
 - Pilot must build/visualize trend information over time
- Depicting Weather Trends
 - Static trend symbols, derived from...
 - Recent history (e.g., Radar Summary)
 - Near-term forecast (e.g., National Convective Weather Forecast -NCWF)
 - NEXRAD image animation ("Weather Looping")

Static NEXRAD Mosaic Image

Static Trend Symbols (Radar Summary)

Near-Term Forecasts (NCWF)

NEXRAD Looping

Weather Looping: Challenges of Airborne Use

- Limited Glance Time
- Moving Reference Frame
- Shorter Planning Horizon
- Limited Data-Link Capacity and Avionics Performance

Airborne Looping: Limited Glance Time

- Consider Faster Loop Animation Cycles
 - May work better with instrument scans
 - How fast is too fast?
- Simplify Display Symbols & Motion
 - Don't animate everything
 - Example: Weather looping product age

Loop Age Example

Loop Elapsed Time

Loop Age

Moving Reference Frame: "Aircraft Looping" Concept

 Concept: Concurrently Depict Animated Weather and Aircraft Track History

 Implementation: Avionics Stores and Displays Matching Aircraft Prior Position On Each Weather Loop Image

Aircraft Looping Example: Initial Static Image

Example: 3-Frame Loop, Frame 1

Example: 3-Frame Loop, Frame 2

Example: 3-Frame Loop, Frame 3

Weather Looping: Shorter Planning Horizon When Airborne

In-Flight is a More "Tactical" Environment Than Pre-Flight

- Shorter Loop Elapsed Times ("Time Histories")
 May Be Better In Flight
 - What is optimal?

Limited Data-Link Capacity, Avionics Performance

- Fewer Loop Frames "Costs" Less
 - Assumes entire loop packaged & sent as one product
 - Fewer frames = more capacity for other products

- How Does Looping Effectiveness Degrade as Frames are Reduced?
 - What frame counts are most "cost-effective?"

Experimental Approach

- Vary Looping Parameters, Assess Pilot Weather Awareness
- Experiment Design Challenges
 - Individual differences, sequence effects, plus...
 - Variability of weather (additional random variable)
 - Large domain of looping parameters
- Experiment Design Approach
 - Show many weather and looping scenarios to many pilot volunteers
 - Multiple counterbalanced, randomized presentation orders
 - Multiple experiments to keep matrix sizes manageable
 - Automate the experiment setup for cost-effectiveness

Two Looping Experiments

- Experiment 1
 - April-May 2004: LaRC, ERAU, OU
 - 65 pilots, ~14,000 data points
- Experiment 2
 - August-September 2005: LaRC, UND
 - 50 pilots, ~17,000 data points
- Both Experiments
 - Four-hour sessions, \sim 6 pilots/session, with laptop computers
 - Included preference/use questionnaires & debrief sessions

Example Looping Experiment Scenario

Aircraft: Current Location

Range Rings: 75nm and 150nm

Future Flight Path and Destination /

Elapsed Time: 40 min

Product Age: 5 min

Exp 1: Independent Variables

- Number of Frames
 - 3, 5, or 9
- Loop Time
 - .5, 1.0, or 3.0 seconds

- Exposure Time
 - 4.5, 9, or 13.5 seconds
- Aircraft Looping
 - On or off

Current Image: 10 Sec

Loop Time: 3.0 Sec

Final Image Dwell: 1.5 Sec

Total Loop Time: 4.5 Sec

Exposure Time: 4.5 Sec

Exp 1: Dependent Variables

Performance Measures:

- Questions after each scenario:
 - Future encounter with weather (y/n)?
 - Future distance from weather (nm)?

Subjective Measures:

- Questions after each scenario:
 - Level of confidence in performance question responses
- Pre- & post-experiment questionnaires:
 - Perceptions and pilot rankings

Summary of Performance Results: Experiment 1

- Frames
 - Best performance with 5 or 9 frames (Note: Elapsed Time fixed at 40 minutes.)
- Loop Time
 - Trend for best performance at 1.0 or 3.0 second cycle
- Exposure Time
 - Same performance 4.5 to 13.5 seconds
- Aircraft Looping
 - Inconclusive (carry-over effects within-subjects design)

Experiment 2 Objectives

- Generalize and Expand Experiment 1 Results
 - Vary Elapsed Time & Temporal Resolution as well as Number of Frames; determine optimal values

- Resolve Aircraft Looping Issue
 - Use between-subjects design to eliminate carry-over effects

Elapsed Time, Temporal Resolution, & Number of Frames

- Elapsed Time, Temporal Resolution, & Number of Frames are interdependent variables
- Increasing the Number of Frames:
 - Increases the viewer's "sense of animation" and
 - Yields a finer Temporal Resolution, if Elapsed Time is fixed or
 - Yields a longer Elapsed Time, if Temporal Resolution is fixed

Elapsed Time, Temporal Resolution, & Number of Frames

Temporal Resolution (minutes)

		5	10	15	20	30
Elapsed Time (minutes)	30					
	40	9	5		3	
	60		(
	90					
	120					

Cells show Number of Frames (Experiment 1)

Elapsed Time, Temporal Resolution, & Number of Frames

Temporal Resolution (minutes)

		5	10	15	20	30
Elapsed Time (minutes)	30		4	3		2
	40	9	5		3	
	60		7	5	4	3
	90		10	7		4
	120		13	9	7	5

Cells show Number of Frames (Experiment 1 & 2)

What We Think Now

- Performance & confidence higher, workload lower with aircraft looping
- Best performance with 60-minute Elapsed Time; nextbest with 30 minutes
- Best performance with 10-minute Temporal Resolution
- Best "performance per frame" with shorter Elapsed Times (60 or 30) and fewer frames (4 or 5)

What's Next?

- Complete & Document Experiments 1 and 2
 - Results will provide looping product design guidance
- Consider Other Moving-Reference-Frame Cues
 - Track history lines
 - Projection lines, arcs
- Add a "Flying" Workload
- How "Tactical" Can We Go?
 - Can animation ameliorate product age effects?
 - Compare with the tactical avoidance "gold standard" onboard weather radar

Questions?